⑴ 歐拉是誰
http://ke..com/view/4645.htm
⑵ eluer(歐拉)的這張圖片解決了什麼問題
http://ke..com/link?url=
⑶ 法國歐拉葡萄酒怎麼樣,好不好的默認點評
這個還是要自己試過才知道的,每個人喜歡的口味都是不一樣的,就算是同一款葡萄酒但是每個人喝出來的味道也是不一樣的,所以喜歡的也是不一樣。個人喜歡澳洲豹葡萄酒
⑷ dockhorn紅酒多少錢
DOC級別產區-PRIORAT{翻譯埔歐拉.該產區位於西班牙土東北CATALUNYA省內.}
外.特別提..西班牙貴酒幾乎都產河域回... RIOJA..價格..根本跟河流帶酒答相比{價格論...}
..西班牙葡萄酒..DOC代表貴或{點像義利}
⑸ 歐拉葡萄酒價格多少
從38到幾千不等!看你是哪款?最快的是用我查查價格軟體直接刷條碼
⑹ 歐拉是德意志人嗎,還是法蘭西人
法國主復體民族。由高盧人、制伊比利亞人、利古里亞人、羅馬人及日耳曼人中的西哥特人、勃艮第人、法蘭克人等其它日耳曼部族長期結合而成,語言屬印歐語系羅曼語族,文字用拉丁字母。另有部分居住在美國、義大利、比利時及加拿大等國。屬歐羅巴人種,主要有3種類型:南部大多為地中海類型,中部大多為阿爾卑斯型,北部大多為大西洋波羅的海型。使用法語,屬印歐語系羅曼語族,有用拉丁字母拼寫的文字,大部分人信天主教,少數信基督教。
⑺ 萊昂哈德·歐拉的紀念活動
在一個小國家裡誕生一位科學巨匠,這在世界史上並不多見。瑞士數學家歐拉便是其中最出色的一位,雖然他成年以後一直生活在兩座遙遠的異國城市:彼得堡和柏林,他的肖像畫卻出現在瑞士法郎上,與英鎊上的牛頓一起成為至今仍流通歐洲的紙幣上僅有的兩位科學家。1707年4月15日,歐拉出生在瑞士西北部鄰近法國和德國的巴塞爾,這座通用法語的城市至今人口仍不足20萬,卻擁有瑞士最早的學府———巴塞爾大學(1460),萊茵河蜿蜒著穿過她的中心。德國哲學家尼采年輕時曾在巴塞爾大學擔任過十年的古典文獻學教授,在那裡完成了他的代表作《悲劇的誕生》,並與在近郊安度晚年的音樂家瓦格納成為莫逆之交。
瑞士是歐拉的出生地,也是歐拉學習和生活過的地方,為了紀念歐拉的數學貢獻,以及對世界科學的影響,瑞士於1957年發行一套郵票,以此紀念歐拉的250周年誕辰,又於2007年發行新的紀念郵票,紀念歐拉誕辰300周年。
1740年,安娜女皇退位並於當年去世,歐拉遂接受了普魯士國王腓特烈大帝的邀請,到柏林科學院擔任數學部主任。歐拉與普魯士國王相處並不愉快,因為國王喜歡溜須拍馬的大臣。腓特烈大帝之所以支持數學只是感到那是一種責任,但他從內心裡討厭這門學問,因為他自己的數學很蹩腳,這方面他無法與法蘭西皇帝拿破崙相比,後者自稱是個幾何學家,並與同時代所有的巴黎數學家都交上了朋友。即使達朗貝爾十分坦率地告訴普魯士國王,把任何其他數學家置於歐拉之上都是一種錯誤的行為。可惜的是,這不僅沒有讓自負的國王改變對歐拉的看法,反而變本加厲使得歐拉更難以忍受。為了自己子女的前途,歐拉只好打點行裝,離開了生活了25年之久的柏林,再次回到了寒冷的彼得堡,他的妻子和兒孫們也一同返回。
在歐拉回到彼得堡之後,女皇以皇室的規格接待他,撥給他一棟可供全家18人居住的大房子和成套的傢具,並派去自己的一個廚子。惱羞成怒的普魯士國王只得寫信給法國數學家拉格朗日,「歐洲最偉大的國王希望歐洲最偉大的數學家在他的宮里。」顯而易見,他對歐拉的離任耿耿於懷。
為了紀念曾經生活在德國的歐拉,德國曾於1950年,1957年,1983年發行了紀念郵票。1950年,在紀念柏林科學院成立250周年的一套郵票中就有畫有歐拉頭像的郵票。1957年的Famous Scientists系列票中也有歐拉的頭像。1983年發行的紀念郵票是為了紀念歐拉的200周年忌辰。 為慶祝歐拉誕辰300周年,瑞士政府、中國科學院及中國教育部於2007年4月23日下午在北京的中國科學院文獻情報中心共同舉辦紀念活動,回顧歐拉的生平、工作及對現代生活的影響。瑞士教育與研究國務秘書Charles Kleiber在開幕致詞中說:「今天,我們在這里紀念近代歷史上最偉大的學者之一。沒有歐拉的眾多科學發現,今天的我們將過著完全不一樣的生活。」
中國科學院副秘書長郭華東、教育部國際合作司司長助理徐永吉、中國科學院數學與系統科學研究院院長郭雷也分別發表了致詞。
值得一提的是,吳文俊院士也出席了紀念活動,並介紹了歐拉和中國古代數學家之間不謀而合的研究方向。 2013年4月15日是歐拉誕辰的306周年,谷歌更換了首頁塗鴉向這位數學天才致敬。在那天的谷歌塗鴉中,融入了許多萊昂哈德・歐拉的數學成就。
⑻ 法國進口葡萄酒。歐拉紅酒,質量絕對可靠,當然也可以來我們實體店上門拿貨
我想問一下你是怎麼可以這樣發出來的帖子,我自己這樣發的話就會被封掉,還禁閉不讓回答問題。
⑼ 歐拉那個國家的人
瑞士人啊
歐拉被公認為人類歷史上成就最為斐然的數學家之一。在數學及許多分支中都可以見到很多以歐拉命名的常數、公式和定理,他的工作使得數學更接近於現在的形態。他不但為數學界作出貢獻,更把數學推至幾乎整個物理的領域。此外歐拉還涉及建築學、彈道學、航海學等領域。瑞士教育與研究國務秘書Charles Kleiber曾表示:「沒有歐拉的眾多科學發現,今天的我們將過著完全不一樣的生活。」法國數學家拉普拉斯則認為:讀讀歐拉,他是所有人的老師
數學史上公認的4名最偉大的數學家分別是:阿基米德、牛頓、歐拉和高斯。阿基米德有「翹起地球」的豪言壯語,牛頓因為蘋果聞名世界,高斯少年時就顯露出計算天賦,唯獨歐拉沒有戲劇性的故事讓人印象深刻。
然而,幾乎每一個數學領域都可以看到歐拉的名字——初等幾何的歐拉線、多面體的歐拉定理、立體解析幾何的歐拉變換公式、數論的歐拉函數、變分法的歐拉方程、復變函數的歐拉公式……歐拉還是數學史上最多產的數學家,他一生寫下886種書籍論文,平均每年寫出800多頁,彼得堡科學院為了整理他的著作,足足忙碌了47年。他的著作《無窮小分析引論》、《微分學》、《積分學》是18世紀歐洲標準的微積分教科書。歐拉還創造了一批數學符號,如f(x)、∑、?駐、i、e等等,使得數學更容易表述、推廣。並且,歐拉把數學應用到數學以外的很多領域。
1707年歐拉生於瑞士巴塞爾,13歲入讀巴塞爾大學,15歲大學畢業,16歲獲碩士學位,19歲開始發表論文,26歲時擔任了彼得堡科學院教授,約30歲時右眼失明,60歲左右完全失明,歐拉1783年76歲在俄國彼得堡去世。在失明後,他仍然以口述形式完成了幾本書和400多篇論文,解決了讓牛頓頭痛的月離等復雜分析問題。
法國大數學家拉普拉斯曾說過一句話——讀讀歐拉,他是所有人的老師。中國科學院數學與系統科學研究院研究員李文林表示:「歐拉其實是大家很熟悉的名字,在數學和物理的很多分支中到處都是以歐拉命名的常數、公式、方程和定理,他的探索使得科學更接近我們現在的形態。」
他讓微積分長大成人
恩格斯曾說,微積分的發明是人類精神的最高勝利。1687年,牛頓在《自然哲學數學原理》一書中首次公開發表他的微積分學說,幾乎同時,萊布尼茨也發表了微積分論文,但牛頓、萊布尼茨創始的微積分基礎不穩,應用范圍也有限。18世紀一批數學家拓展了微積分,並拓廣其應用產生一系列新的分支,這些分支與微積分自身一起形成了被稱為「分析」的廣大領域。李文林說:「歐拉就生活在這個分析的時代。如果說在此之前數學是代數、幾何二雄並峙,歐拉和18世紀其他一批數學家的工作則使得數學形成了代數、幾何、分析三足鼎立的局面。如果沒有他們的工作,微積分不可能春色滿園,也許會打不開局面而荒蕪凋零。歐拉在其中的貢獻是基礎性的,被尊為『分析的化身』。」
中國科學院數學與系統科學研究院研究員胡作玄說:「牛頓形成了一個突破,但是突破不一定能形成學科,還有很多遺留問題。」比如,牛頓對無窮小的界定不嚴格,有時等於零有時又參與運算,被稱為「消逝量的鬼魂」,當時甚至連教會神父都抓住這點攻擊牛頓。另外,由於當時函數有局限,牛頓和萊布尼茨只涉及到少量函數及其微積分的求法。而歐拉極大地推進了微積分,並且發展了很多技巧。
「在分析之前,數學主要是解決常量、勻速運動問題。18世紀工業革命時,以蒸汽機紡織機等機械為主體技術得到廣泛運用,但如果沒有微積分、沒有分析,就不可能對機械運動與變化進行精確計算。」李文林表示,到現在為止,微積分和微分方程仍然是描寫運動的最有效工具,教科書中陳述的方法,不少屬歐拉的貢獻。更重要的是,牛頓、萊布尼茨微積分的對象是曲線,而歐拉明確地指出,數學分析的中心應該是函數,第一次強調了函數的角色,並對函數的概念作了深化。
變分法來源於微積分,後來由歐拉和拉格朗日從不同的角度把它發展成一門獨立學科,用於求解極值問題。而變分學起源頗富戲劇性——1696年,歐拉的老師、巴塞爾大學教授約翰·伯努利提出這樣一個問題,並向其他數學家挑戰:設想一個小球從空間一點沿某條曲線滾落到(不在同一垂直線上的)另外一點,問什麼形狀的曲線使球降落用時最短。這就是著名的「最速降線問題」,半年之後仍沒人解出,於是伯努利更明確地表示「即使是那些對自己的方法自視甚高的數學家也解決不了這個問題」。有人說他在影射牛頓,因為伯努利是萊布尼茨的追隨者,而萊布尼茨和牛頓正因為微積分優先權的問題在「打仗」,並導致歐洲大陸和英國數學家的分裂。
當時牛頓任倫敦造幣局局長。有一天他收到一個法國朋友轉寄的「挑戰書」,於是吃過晚飯後挑燈夜戰,天亮前解了出來,匿名發表在劍橋大學《哲學會刊》。雖是匿名,但約翰·伯努利看到之後驚呼:「從這鋒利的爪我認出了這頭雄獅。」後來伯努利兄弟和萊布尼茨也都解出了這個問題,發表在同一期刊物上。
在這個問題中,變數本身就是函數,因此比微積分的極大極小值問題更為復雜。這個問題和其他一些類似問題的解決,成為變分法的起源。歐拉找到了解決這類問題的一般方法,教科書中變分法的基本方程就叫歐拉方程。
歐拉13歲上大學時,約翰·伯努利已經是歐洲很有名的數學家,伯努利後來對歐拉說,「我介紹高等分析的時候,它還是個孩子,而你正在將它帶大成人。」
全才數學家
李文林說:「除了分析,很多數學領域都繞不開歐拉的名字。如數論,高斯說數學是科學的皇後,而數論是數學的皇後,其難度和地位可想而知。」代數數論的形成和費馬大定理有很深的關系。費馬17世紀提出的一個猜想——方程xn+yn=zn,當n≥3時沒有整數解。費馬猜想也稱費馬大定理,費馬在提出這一猜想的同時,在紙邊寫了一句話宣稱:「我已找到了一個奇妙的證明,但書邊空白太窄,寫不下。」於是費馬的證明已成千古之謎。此後經過300年,直到1993年費馬大定理才被英國數學家最終解決。整個18世紀,數學家們都想解決這個猜想,但只有歐拉作出了唯一的成果,證明了n=3的情況,成為費馬大定理研究的第一個突破。
歐拉對費馬大定理的證明是在1753年給哥德巴赫的信中首次說明的,1754年正式發表。兩人經常通信討論問題,哥德巴赫猜想的雛形也是在哥德巴赫寫給歐拉的信中首先提出,歐拉在回信中進一步明確。
歐拉是解析數論的奠基人,他提出歐拉恆等式,建立了數論和分析之間的聯系,使得可以用微積分研究數論。後來,高斯的學生黎曼將歐拉恆等式推廣到復數,提出了黎曼猜想,至今沒有解決,成為向21世紀數學家挑戰的最重大難題之一。
「在幾何方面,歐拉解決了哥尼斯堡七橋問題,這也成為圖論、拓撲學的濫觴。」李文林說。哥尼斯堡曾是德國城市,後屬蘇聯。普雷格爾河穿城而過,並繞流河中一座小島而分成兩支,河上建了7座橋。傳說當地居民想設計一次散步,從某處出發,經過每座橋回到原地,中間不重復。李文林說:「這就是今天的『一筆畫』問題,但在當時沒人能解決。歐拉將這個問題變成一個數學模型,用點和線畫出網路狀圖,證明這種走法不存在,解決了哥尼斯堡七橋問題。對此類問題的討論研究,事實上引導了圖論和拓撲學的發展。」
拓撲學中的歐拉示性數也溯源於歐拉1752年提出的關於凸多面體的一條定理:
在一凸多面體中,頂點數-棱邊數+面數=2。
陳省身曾指出歐拉示性數是很多問題和解決辦法的來源,對幾何學的影響是根本性的。李文林說:「因為數學好,歐拉得以解決很多其他領域的問題。物理、力學、天文學、航海、大地測量等等到處都有歐拉的貢獻,他是典型的全才數學家。牛頓、萊布尼茨發明的微積分可以說是『原生態』,而歐拉18世紀寫的文章我們現在依然能讀,可以說歐拉等人使得數學特別是分析向現代形式發展。」
最多產的數學家
歐拉是歷史上最多產的數學家。瑞士自然科學基金會組織編寫《歐拉全集》,計劃出84卷,每卷都是4開本(一張報紙大小)。如果按每本300頁計算,歐拉從18歲開始每天得寫1張半紙。然而這些只是遺存的作品,歐拉的手稿在1771年彼得堡大火中還丟失了一部分。歐拉曾說他的遺稿大概夠彼得堡科學院用20年。但實際上在他去世後的第80年,彼得堡科學院院報還在發表他的論著。
「天才在於勤奮,歐拉就是這條真理的化身。」李文林表示,「很多科學家都很勤奮,而歐拉最為典型。他失明後的十多年都是在完全看不見的情況下作研究。歐拉心算能力很強,可以通過口述讓別人記錄。有一次歐拉的兩個學生算無窮級數求和,算到第17項時兩人在小數點後第50位數字上發生爭執,歐拉這時進行心算,迅速給出了正確答案。」
「高斯的神童故事雖然有趣,但並不是每個人都是神童。即使是身為神童的高斯,其勤奮也是出名的。可以說凡有大成就的數學家必有大勤奮。」李文林舉例說,被譽為「現代分析之父」的德國數學家魏斯特拉斯也是異常勤奮。大學畢業後他在一所偏僻的中學任教14年,教數學、德語、書法、體育,每天晚上以驚人的毅力堅持研究,當時工資很低,連投稿的郵費都沒有。後來由於偶然的機會他的研究論文被德國數學家克萊爾創辦的數學雜志發表出來(克萊爾雜志以幫助沒出名的年輕學子發表創新成果而著稱),震驚了歐洲科學界。
胡作玄認為,歐拉的成功說明了一個人的潛能。「高斯曾說,要像歐拉那樣做,我的眼睛也要瞎了。一個人要想做事是沒有問題的,只是現在社會比較復雜,我們應該為科學而科學,為藝術而藝術。」
除了做學問,歐拉還很有管理天賦,他曾擔任德國柏林科學院院長助理職務,並將工作做得卓有成效。李文林說:「有人認為科學家尤其數學家都是些怪人,其實只不過數學家會有不同的性格、閱歷和命運罷了。牛頓、萊布尼茨都終身未婚,歐拉卻不同。」歐拉喜歡音樂、生活豐富多彩,結過兩次婚,生了13個孩子,存活5個,據說工作時往往兒孫繞膝。他去世的那天下午,還給孫女上數學課,跟朋友討論天王星軌道的計算。突然說了一句「我要死了」,說完就倒下,停止了生命和計算。
回顧歐拉的一生,李文林認為:「雖然他20歲離開瑞士,一直沒有回去過,但他卻是一個愛國者,至死沒有改變國籍。所以現在我們還能說他是瑞士數學家。」
「牛頓、萊布尼茨、歐拉、拉格朗日、拉普拉斯都是全面的數學家。後來隨著科學的發展,全才越來越少,有人說龐加萊也許是最後一個。」但是數學並不會因此枯萎,李文林說:「18世紀末曾有一種悲觀主義在數學家中蔓延,連拉格朗日這樣的大數學家都認為數學到頭了,但事實相反,19世紀初非歐幾何的發現、群論的創立以及微積分嚴格化的突破,使數學獲得了意想不到的蓬勃發展。現代數學,特別是跟計算機結合起來之後,肯定還會有新的形態。」